

OBJECTIVES

- Improve the observation and predictions of oil movements in the sea using **novel on- line sensors** on vessels, fixed structures, smart buoys or gliders, and smart data transfer to operational awareness systems;
- Explore the true environmental impacts and benefits of a suite of marine oil spill
 response technologies in the cold climate and ice-infested areas in the northern
 Atlantic Ocean and the Baltic Sea. Methods included are:
 - mechanical collection in water and below ice,
 - in situ burning,
 - use of chemical dispersants,
 - natural biodegradation
 - and combinations of these;
- Assess in particular the impacts on fish, invertebrates (e.g., mussels, crustaceans)
 and macro algae of naturally and chemically dispersed oil, in situ burning residues
 and non-collected oil using highly sensitive biomarker methods, and to develop
 specific methods for the rapid detection of the effects of oil pollution on biota
- Develop a strategic Net Environmental Benefit Analysis tool (sNEBA) for oil spill response strategy decision making in cold climate and ice-infested areas.

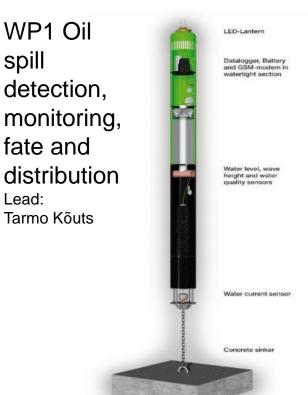
PARTNERS

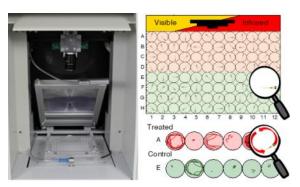
Participant No	Participant organisation name	Country
1 Kirsten Jørgensen	Finnish Environment Institute SYKE	Finland
2 Susse Wegeberg	Aarhus University	Denmark
3 Jaak Truu	University of Tartu	Estonia
4 Tarmo Kõuts	Tallinn University of Technology	Estonia
5Thomas Benjamin-Seiler	RWTH Aachen University	Germany
6 Ionan Marigomez	University of the Basque Country	Spain
7 Bjørn Munro Jenssen	Norwegian University of Science and Technology	Norway
8 Lonnie Bogø Wilms	Greenland Oil Spill Response A/S	Greenland
9 Rune Högström	Lamor Oy	Finland
10 Seppo Virtanen	Meritaito Oy	Finland
11 Björn Forsman	SSPA Sweden AB	Sweden
12 Christian Petrich	Norut	Norway
13 Feiyue Wang	University of Manitoba (no EU funding)	Canada

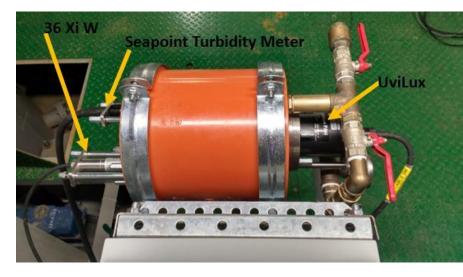
Total costs 5.5 mill €, total grant 5.3 mill €, 1.3.2016-31.8.2019

GRACE ACTIONS SO FAR

- Much field and laboratory work performed
- Unique possibilities to perform field tests e.g with in situ burning in Greenland, oil sensor trials with Smart buoy in oil harbour, oil sensor in FerryBox on passenger ship, electrokinetic treatment in the heart of Helsinki for oil-polluted sediment cleaning
- Successful communication of the project to the right end users






Schematic diagram of the SmartBuoy concept

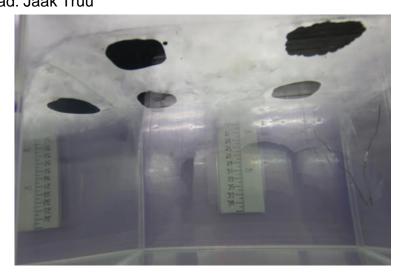
Zebrafish larvae behaviour assessment scheme: DanioVision observing system and trajectories

MS Baltic Queen FerryBox data is available on http://on-line.msi.ttu. ee/GRACEf

On-line sensors in FerryBox on board MS Baltlic Queen

Slocum G2 Gllider of TUT

Oil in seawater Dispersed oil in seawater



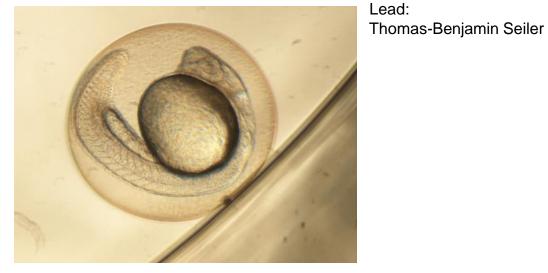
Biodegradation tests at 4 °C

Töölö Bay, Helsinki, site for electrokinetic treatment of sediment

WP2 Oil biodegradation and bioremediation Lead: Jaak Truu

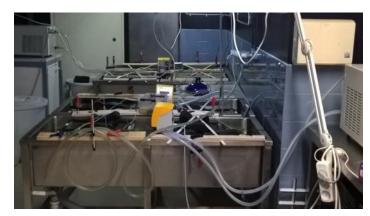
Oil under ice biodegradation experiment, Seawater from Svalbard

Electrodes for electrokinetic treatment of sediment



Preparing to sample mussels by scuba diving in the Baltic Sea in -

20C temperature


Sampling Limnocalanus

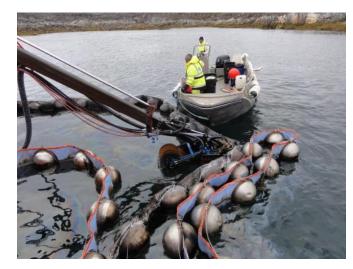
Zebrafish embryo at well wall, normal development (no effects), 24 h post fertilization

Preparation of WAF (water accommodated phase

Oil exposure experiments with blue mussels in aquariums

WP4Combat of oil spill in coastal arctic water - effectiveness and environmental effects Lead: Kim Gustavson

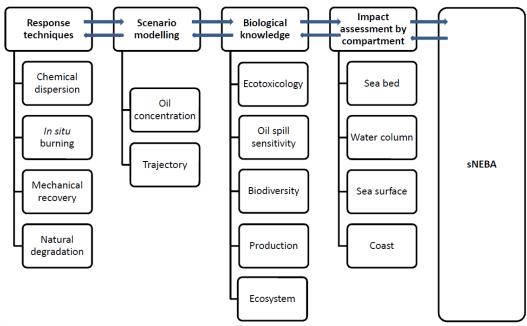
Baseline study of shoreline before experiments (Ole Geertz-Hansen)

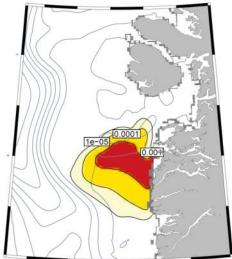


Test tank in Porvoo for testing oil collection

Under ice removal unit - Prototype

Shoreline experimental in situ burning




Collecting burning residue with Bucket Skimmer, Greenland

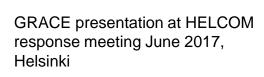
WP5 Strategic
Net
Environmental
Benefit
Analysis
(sNEBA)
Lead:
Susse Wegeberg

Flow chart for the Environment & Oil Spill Response (EOS) analytical tool

Oil dispersion simulation from scenario in Greenland

WP6 Management, dissemination and communication

Lead: Kirsten Jørgensen


Further information:

GRACE web site: http://www.grace-oil-project.eu

GRACE final conference Tallinn, Estonia May 23-24, 2019

GRACE video stand at the MOSPA conference Oulu, 2018

